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Abstract 

Integrable hierarchies arising from Schrijdinger equations with energy-dependent potentials are 
found to determine flows on the strata of the Grassmannian different from the big cell. As a conse- 
quence they have wide classes of solutions associated with the zero sets of KdV r-functions. The 
group-theoretical description of these hierarchies from the point of view of Birkhoff factorization 
theorem is given. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The relationship between the infinite-dimensional Grassmannian Gr [ 141 and the theory 
of integrable systems has been essential not only to explain the geometry of equations 
of Korteweg-de Vries (KdV) type but also to formulate several relevant problems arising 
in quantum field theory and string theory [5-91. The Grassmannian has a decomposition 
into strata with a principal stratum, called the big cell, which is a dense open set in Gr. 
Integrable systems such as those of the Kadomtsev-Petviashvilii (KP), KdV or Gel’fand- 
Dikii hierarchies are described by flows in Gr such that their associated solutions blow up 
as the flows leave the big cell. For example, in the case of Grc2), the part of Gr which is 
relevant for the KdV hierarchy, every element W E Grc2) determines a flow W(t) in GrC2) 
and a solution of the hierarchy of the form 

a21nsw 
uw(t) = -2p at2 (0, t := @I, t3, t5 . . .>, 

I 
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where tw(t) is the t-function associated to W. This solution is defined only for those t 
such that tw (t) # 0 and this is just the condition for W(t) to be in the big cell of Gr. Due 
to the fact that the big cell is a dense open set of Gr, the flows W(t) stay in the big cell 
for almost all t. Nevertheless, the remaining strata of Gr are also of interest in the theory 
of integrable systems. For instance, in a recent work by Adler and van Moerbeke [ 10,l l] 
the strata different from the big cell have been found to be essential to study the blow up 
behaviours and to regularize the solutions of the KP hierarchy near the blow up. The purpose 
of the present paper is to show that these strata are also useful to describe hidden hierarchies 
of integrable systems. More precisely, we consider the Grassmannian Grc2) which admits a 
partition into a numerable collection of strata of the form 

GrC2) = U &, 

where only the stratum & is in the big cell. We find that the remaining strata Em , m 2 1, 
not only describe the singularities of the solutions of the KdV hierarchy but also support 
the flows of the integrable hierarchies associated to S&r&linger equations with energy- 
dependent potentials 

89 -= 
ax2 

k2m+1 + &nun(x) h := k2. 
n=O 

These hierarchies were introduced and studied from the point of view of the hamiltonian 
formalism in [ 131. They were further generalised and analysed in [14-171. In what follows 
they will be referred to as the hidden (2m + 1)th KdV hieruchies (hKdVz,+t), since their 
flows take place outside the big cell. 

The main ingredient of our analysis is the close link it establishes between the hKdV 
hierarchies and the zero sets of KdV r-functions in the infinite-dimensional space Coo = 

]t = 01, t3, t5 , . . .), ti E C}. Thus, it is proved that, as a function of tl , tw (t) can have 
zeros of orders 1, := m(m + 1)/2 (m p 1) only, and that the set of Im-order zeros of tw is 
characterized by some associated solutions of the hKdVg,+r) hierarchy. As a consequence, 
a method is provided for characterizing solutions of the hKdV hierarchies from r-functions 
of the standard KdV hierarchy. 

The stratification of the Grassmannian Gr (2) has a group-theoretical formulation which 
derives from its representation as a homogeneous space 

where LGL2 is the loop group of smooth maps from the unit circle to GL2 and L+GL2 
is the subgroup of maps that extend holomorphically to the unit disk. From the Birkhoff 
factorization theorem [18] it follows that for any loop g E LGL2 there exists a unique 
m = (m 1, m2) E Z2, up to permutation, such that 

g=g_.P.g+ 
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where 

km := diag(kml, kn2) 

and g+ E L*GLz, with L-GL2 being the subgroup of maps that extend holomorphically 
outside the unit disk. In this picture the strata of Grc2) are identified with subgroups of L-GL2 
and the hKdV hierarchies turn out to be associated with the zero-curvature equations arising 
from Birkhoff factorization with m # 0. 

The paper is organized as follows. In Section 2 we introduce the hKdV hierarchies from 
the associated linear system. The peculiar form of the wave functions is revealed from 
the analysis of the asymptotic solutions of the corresponding equations of Schodinger type. 
Section 3 is devoted to the analysis of the zero sets of KdV t- functions and their connection 
with the stratification of Grc2). In Section 4 it is shown how the hKdV hierarchies arise in 
Grc2) and a solution method for them is provided and illustrated through the consideration of 
some relevant examples as well as some applications to Calogero-Moser systems. Finally, 
Section 5 brings into play the loop group description of Grc2) in order to characterize the 
hKdV hierarchies in the context of Birkhoff factorization. 

2. Integrable hierarchies associated to Shriidinger equations with energy-dependent 
potentials 

Let us start by analysing the asymptotic solutions for large k of the Schrodinger spectral 
problem 

2m 

@b(k, x) = J.2m+1 + c A%(x) h := k2, 

n=O 
(1) 

where we use the notation a, f = af /ax. As usual we introduce the change of dependent 
variable 

Y = Wnllr, 

which reduces (1) to the Ricatti equation 

2m 

a,y + y2 = k4m+2 + c k2’bn (x). 
n=O 

If we now assume a Laurent expansion for y 

then by identifying the coefficients of the monomials kn for 2m 5 n i 4m + 1 in the Ricatti 
equation the asymptotic solution of (1) can be written as 

@(k, x) = exp 2 k2n-1b,(x) + k2m+1 
n=l 

q(l+.r;q. 
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It must be noticed the presence of the m functions b, (x) which characterize the factor of 
$ with an essential singularity at k = 00. This feature establishes an important difference 
with respect to the standard Schrodinger spectral problem (m = 0). 

Our next task is to describe the hKdV(z,+i 1 hierarchy associated with (1). To this end it 
is convenient to introduce the following infinite set of variables 

trn := 02mfl9 f22m+3, f2m+5>. . .), 

and in particular we will henceforth denote 

x := r.yQ7$+]. 

We are going to characterize the members of the hKdV(z,+l) hierarchy in terms of solutions 
of an infinite linear system of the form 

a,‘* = u(h, L)lcI, (2) 

a2n+le =CG& 6de + bd, max5k 
a 

n > m, a2n+l := - 
af2n+l ’ 

(3) 

where u = u(h, tM) is defined by 

U := h2m+’ + ,&(r,,,). 
?I=0 

and a, and /In are polynomials in h. Moreover, as k -+ 00 the wave function I/J is assumed 
to admit an expansion 

+(k,t,) = exp 

[ 

~k2”~‘bn(t,) + c k2n-’ 
n=l ?I>m+l 

t2n_,] (1+&. (4) 

First of all we introduce the following bilinear form for functions of k: 

B(4 +) .= _@(k)+(-k) -$(-k)+(k) 
, . 2k’h+l 

Then, Eq. (3) for @(k, tM) and $r(-k, tm) leads to a linear system for oy, and ,&, the solution 
of which is: 

Moreover, from (2) it immediately follows 

a,B(+, a,+) = 0, 

and hence it is easy to see that 

a,B, = -2a, + a2n+dnB(+, ado 

If we now take into account that 

B(llr, a,$) = 1 + O(h-‘), 

(5) 

(6) 
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then as a~,, and fin are polynomials in A, from (6) we deduce 

Furthermore, the compatibility condition for (2) and (3) implies 

aZn+t(a.?llr - ulc/) = (-a2n+lu + a&, + 2r4Bn + Bna.+)+ 

+(2axu, + a,2j3,)axq = 0. 

Hence, we obtain 

(7) 

a2n+lu = -ia,‘b + 22daxpn + pnaxu. (8) 

The final step consists in relating the function /In with the trace of the resolvent of the 
Schrijdinger operator 

Indeed, by taking into account that 

-2k2”+tR(*, a2n+l +) = -2k2n+l +((k)*(4) + o(P), 
then from (5) and the polynomial character of pn as a function of h it follows that 

fin = (hn-mR)+. 

Here (A’-, R)+ stands for the polynomial part of knernR with R being substituted by its 
expansion as A -+ 00 

R=l+cy. 
ll?O 

It turns out [ 131 that the coefficients R, are differential polynomials in the potential coeffi- 
cients(uc,ut,..., ~2~) which can be determined by means of the equation 

-ia,3R +2ua,R + (a,u)R = 0. 

Therefore, Eq. (8) can be expressed as 

a2n+,U = (-$a_; + 2uaX + a+)(kn-mR)+. 

Now, due to the fact that 

(9) 

(-$a,3 + 2uaX + aXu)(k+mR)+ = -(-$a; + 2uaX + aXu)(kn-“R)_, 

it is immediate to realize that Eq. (9) constitutes an evolution equation for (~0, u 1, . . . , ~2~). 
The set of these equations is the hKdV(2,+t) hierarchy of integrable equations associated 
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with the Schrodinger operator (1). Solutions of the members of the hierarchies can be 
derived from the functions bi and a, arising in expansion (4). 

For example, the potential function for the hKdV(3) hierarchy is given by 

u. = a,, - 2a2axal + al a,2bl + 2axala,bl, 

u1 = (axb,j2 + 2a,4, u2 = 2a,bl. (10) 

The analogous formulas for the hKdV(S) hierarchy are 

u. = 2axa5 - a4a,al + ala,2bl + a3a,2b2 

+ 2a,bla,al + 2a3axb2 - a2(axb1j2 - 2u2axu3 

+ 2aiaxal - ala2a,2b2 - 2u2axb2axul, 

241 = (axbd2 + 2axa3 - 2a2axal + ala,2b2 + 2a,alaxb2, 

u2 = 2axbl axb2 + 2axal, U3 = 2a,bl + (a,b2)2, u4 = 2a,b2. 

The first equation of the hKdV(3) hierarchy corresponds to the time parameter t = t5 and 
takes the form 

artdO = ;a$, - uoaxu2 - ~u2axuo, 

atul = -$k2axul - ulaxu2 + axuo, 

atu2 = -$42axu2 + a+, . 

(11) 

The simplest member of the hKdV(s) hierarchy is associated with the time parameter t = t7 
and can be written as 

atuo = ta,3u4 - uoaxu4 - $u4axuo, 

atul = -$4axul - ulax2d4 + axuo, 

atu2 = -$t4axu2 - u2axu4 + axul, 

a,u3 = -~u4axu3 - u3axu4 + axu2, 

atu4 = +,a,~, + axu3. 

3. Zeros of t-functions and the stratification of the Grassmannian 

Let H = L2 (S ’ ) be the Hilbert space of all square-integrable functions on the unit circle 
S’ of the complex plane. It can be decomposed as the direct sum H = H+ CB H_ of the 
closed subspaces 

H+ := C(k”),>o, H_ := C{k-n}n>I. - _ 

We will consider the Grassmannian Gr of all closed subspaces W of H such that 
(i) The orthogonal projections PA : W + HA are operators of Fredholm and compact 

types, respectively. 
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(ii) The virtual dimension of W (i.e. the index of P+) is zero. 
It can be proved that Gr constitutes a connected Banach manifold - if P- is Hilbert- 

Schmidt then Gr is a Hilbert manifold - which exhibits a stratified structure. To describe 
the strata of Gr it is required to introduce the set So of increasing sequences of integers 

s = {so, Sl> $2, . . .I, 

such that sn = n for all sufficiently large n. Each W EGr determines a sequence of this 
type. To see this point recall that an element w E H is said to be of finite order n if it can be 
expressed in the form w = &5nam km, with a, # 0. Thus, due to the fact that the virtual 
dimension of W is zero, it can be shown that the sequence 

SW = {n E Z: W contains an element of order n} 

is an element of So. Thus, given S E So we may define the subset of Gr 

J3.s = {W E Gr: SW = S), 

which is called the stratum corresponding to S. In any W EGr the elements of finite order 
form a dense open subspace denoted by W “g Therefore, W belongs to _Xs when Wa’g has . 
a basis { w,}?o such that 

w,(k) = P(l + O(k-I)), n 10. 

The stratum Es is a submanifold of Gr of finite codimension given by 

codimZ:s = c(n - s,). 
?l>O 

In particular, if S is the set of non-negative integers, the corresponding stratum has codi- 
mension zero and constitutes a dense open subset of Gr which is called the big cell of the 
Grassmannian. 

In the analysis of the KdV hierarchy one is lead to consider the subset of Gr given by 

GrC2) = {W E Gr: k2 W c W}. 

Here k2 denotes the action of the multiplication operator by the function K2. It is obvious 
that SW + 2 c SW for all W E GrC2), and as a consequence the stratification of GrC2) turns 
out to be 

Grc2) = U Z In? Em := Es, fl GrC2), (12) 
?T@O 

where 

S, = I-m, -m + 2, -m + 4, . . . , m, m + 1, m + 2, . . .}. 

The KdV flow on Gr (2) is defined for appropriate t := (tl , t3, ts, . . ,) E Coo in terms of the 
trajectories 

W(t) := Ilro(k, t)-‘W = {+o(k, t)-‘w : w E W}, W E GrC2), 
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where 

@o(k, t) := exp 

( 1 

C t~~+rk~~+ 
nz0 

is the so called vacuum wave function of the KdV hierarchy. 
As it is proved in [2] W(t) belongs to the stratum X0 for almost all t. This is so because 

there exists a non-zero holomorphic function to (t) associated with W such that the function 
defined by 

@w(k, t> := l/Yo(k, t) rw(:;(;)@)) )  

with 

( 1 1 
E(k) := 

k’ 3’“” (2n + :)k2”+l ’ . . . > ’ 

belongs to W for all t such that tw(t) # 0. In this way, and taking into account that the 
derivatives off with respect to the variables t,, are also members of W, it is trivial to prove 
that provided tw (t) # 0 the subspace W(t) contains elements w, of order n for all n L 0. 
Therefore, W(t) E Zo and, as a consequence, there exist decompositions of the form 

a,‘ew = (h + u,(t))+w, x := tl, h := k*, 

a2n+l+W =~d~*,thbw +iwWww~ 

where 

a 
a2n+l := - 

at2n+l ’ 
n 1 0, 

and on and ,&In are polynomials in k2. By imposing the compatibility between these equations 
one gets the standard KdV hierarchy of evolution equations for the function 

uw(t) = -2$ln rw(t). 

Now we consider one of the main points of our discussion: the analysis of the zero set 
of tw (t) or, equivalently, the set of singularities of the corresponding solution u w(t) of the 
KdV hierarchy. 

Theorem 1. Let to = (to,, tO3, tO5, . . .) be a zero of tw(t). Then, there exists an integer 
m > 0 such that thefunction tw(tl, to3, to5, . . .) has a zero of order 

1, := 
m(m - 1) 

2 ’ 
at tl = tol. 

Proo$ As W E Gr c2) it follows that W(t0) E Gr(*). Hence, from Eq. (12) and taking into 
account that tw (to) = 0, the subspace W (to) is in one of the strata Z;, for some m > 0. 
Now, from Proposition 8.6 of [2] we have that for any V E Gr 

tv(t1,0, 0, . .) = ct,l + o(tf+‘>. 
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where c # 0 and 1 is the codimension of the stratum of Gr containing V. Moreover, it is 
easy to find that 

codimCs,,, = I,, 

and therefore 

tw(t”)(X, o,o, . .) = CP + o(dm+‘>, 

with c # 0. Furthermore, according to the following property of t-functions, which derives 
from Eq. (3.4) of [2], 

rv @ + t’> = Q(t) @‘) 9 

we have 

rw(to1 +x, fo3, to57 . . .> = tW(tlj)(X, o,o, . . .>. 

Hence, the statement of the theorem follows at once. 0 

As a consequence of this result we see that the minimal order I,,, for which a derivative of 
the form afntw(g) does not vanish characterizes the stratum JSm containing W(t0). Thus, 
we may state the following result. 

Corollary 1. The following statements are equivalent: 
(1) W(t0) is in the stratum Z,. 
(2) The z-function of W satis$es 

a; SW (to) = 0, Ojn <I,, a? tW (to) # 0. 

(3) The t-function of W satis$es 

afntw(to) = 0, 0 5 n < m, afmtw(to) # 0. 

4. Zeros of t-functions and hKdV hierarchies 

We are now in position to analyse the relationship between the zero sets of r-functions 
and the hKdV hierarchies. Let us suppose given W E Grc2) and let us denote by ZW the 
zero set of the corresponding t-function SW. According to Theorem 1 there is a partition 
of ZW of the form 

zw= Uz$, 
??I>1 

where Z’$ stands for the set of zeros to = (toI, to3, to5, . . _) of tw (t) such that the function 

rw(t1, to39 tos,. . .) has a zero of order I, at tl = tol. From Corollary 1 we see that Z’; can 
be characterized as the set of solutions t E C” of the system of m equations 

ajntw(t)=O, Osn cm, 

satisfying a? tw (t) # 0. 

(13) 
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The set Zw is an analytic set in Coo [19], so that it can be considered as a union of 
complex manifolds. Suppose we are able to find a patch in ZW described by a mapping 
D c CD0 + Zf of the following form: 

L := @2m+1, t2m+3, t2m+59 . . .I t-+ Wm> := @l@m), . . . , bn@m),~m), (14) 

where the functions bi are m complex-valued functions depending on tm. This means that 
t(&) is required to satisfy Eq. (13) and aktw(t(t)) # 0 for all tm E D. Notice that the 
functions bi can be found by solving (13) with respect to the first m variables tTi+l. 

We are going to see that patches t(&) are associated with solutions of the hKdV(2,+1) 
hierarchy. From Corollary 1 we have that W(t(t,)) E Em for all tm E D, and therefore 
there exists a unique function in W (f (tm)) of order-m 

qw(k,t,)=~(l+~+...+~+... . 1 (15) 

Theorem 2. Thefunction 

$w(k, &) = Ilro(k, t(trn))$w(k9 M, 

sati$es the linear system (2), (3). 

(16) 

Proo$ From expansion (15) we have that for all II 2 0 the functions 

k2”Ilr$$w, k2”llr$ww, (17) 

are elements of W (t&)) of orders 2n - m and 2n + m + 1, respectively. Hence, due to the 
fact that W(t(t,)) E Em, it follows that the functions in (17) form a basis of W(t(t,))“‘g. 

Moreover, by denoting 

b(t,) := 2 k2”-‘b&J, 

and 

?j := a,“ll/W - (a,b + k2m+1)2.11rW - (2k2m&al)$w, 

it is obvious that Q E W. Furthermore 

I++& = O(k”-‘), 

so that t,k;‘r belongs to W(t(t,)) and has an order not greater than m - 1. Hence, there 
exists a decomposition 

and this implies Eq. (2). 
In a similar way one proves that (16) satisfies (3). 
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The above analysis provides a method for generating solutions to the hKdV hierarchies 
from elements W E GrC2). The starting point is the t-function tw(t) corresponding to W. 
Suppose that for a given m > 1 the system (13) can be solved with respect to (tl , . . . , t2,+ 1) 
in terms of m functions of tm = (&+l, &+3, . . .) 

b-1 = h@m), i = 1,. . . , m. 

Then, the function (16) determines a wave function of the hKdVc2,+1) hierarchy on the 
domain D of points tm such that 

a? tw (Wrrl)) # 0. 

Our next theorem shows how to determine the explicit form of (15) from the s-function 
of w. 

Theorem 3. Zf W(to) is in the stratum .& then thefunction $w (k, to) is given by 

$w(k, to) = 
a?- tw (to - E(k)) 

arm-1 Pm(@tw(t,) ’ 
(18) 

where P,(S), a := (al, ax, . . .), is obtainedfrom the identity 

exp(-e(k) . a) = c $ Pn(a). 
?I?0 

Prooj The proof of this result is based on the properties of the decomposition of t-functions 
in terms of Schur functions [2] 

TV@) = c uSF&>. (19) 
s 

Each Fs is a polynomial in the ti , homogeneous of weight I(S) if we give ti weight i, with 
Z(S) given by the codimension of the stratum .Zs. It turns out [2] that the minimal weight of 
the terms in (19) is the codimension of the stratum on which V lies. hence, by taking into 
account that 

1 1 1 
tol--+x,to3--,to5--,... 

k 3k3 5k5 

1 1 1 
= tW(to) x - -, 

k 
--, --, 

3k3 5k5 
. . . ) 

from the assumption W(to) E Z;, we deduce that 

qw(to -E(k)) = 0 

Hence, the minimal order nmin for which aFmin tw(to - e(k)), as a function of k, is not 
identically zero must satisfy n min > 1,-l. Otherwise W (to) would admit elements of 
degree d < m and this would contradict the assumption W(to> E &. Let us see that 
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nmin = 1,-l. Firstly, we notice that nmin is of the form I, for some p 2 0. This follows 
from Theorem 1 which implies that nmin is the minimum of the values I, corresponding to 

the strata EP such that W(to - c(k)) E .E, for some value of k. Moreover, as afm tw (to) # 0 

and &(a) = a:/2 it follows easily that a~-2tW(tu -E(k)) = 0, so that nmin is of the form 
1, with p < m. Therefore nmin = l,+~ 

Finally, from (20) we deduce 

aytw(t0 - E(k)) = ; + 0 

with c # 0, since otherwise W (to) would admit elements of degree d < m. The rest of the 
proof follows at once. 0 

In view of the above results we have that the known classes of r-functions for the standard 
KdV hierarchy are to our disposal in order to generate solutions to the hKdV hierarchies. 
For example, we can take the class which characterizes the rational solutions (see [24] and 
[20-221 vanishing as x + co. These r-functions can be obtained by means of coordinate 
translations from the r-functions rm associated with the subspaces 

They can be written in the form 

&I &+I ... h2m-1 

Am_2 /2,-l ... h2m_3 
%I@> = . . . 1 m 2 1, 

h2:m h3:-In ... i, 

where hi = hi(t) are the Schur polynomials: 

exp (-~t~,+rk2i”1) = zhi(t)k’, 

and hi = 0 for i < 0. The first few are 

t] = -t1, q = -;t; + tg, t3 = &tf - ftFt3 + t1t5 -t$ 

Let us describe some solutions of the hKdV(z,+r) hierarchies for m = 1,2 which derive 
from these r-functions. 

We first consider rz which can be factorized as 

2 

t = -; l--I@, - Ei fi), 
2n 

c:=exp i- . 
(1 3 

i=O 

Thus, for tg # 0 we have three patches t(‘) (tr ) (i = 0, 1, 2) with associated functions 

bj’) = ei 6. 
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Each of them determines a wave function of the hKdV(j) hierarchy. For example, for i = 0 
we get 

k~+k3x+~t2,,+Ik2”+’ 
n12 

) (&&J x:=t3, 

and the following solution of the hKdV(s) hierarchy: 

4 3 2 
uu=-, 

X2 u1 = (3x)4/3’ u2 = (3x)2/3’ 

The analysis of the solutions of the hKdV hierarchies provided by 53 is more involved. 
The discriminant of s3 with respect to tl is 

A(Q) = [(3t# - (5t5)3]2. 

Hence, if A(t), # 0 the polynomial q(tl, tl), as a function of tl, has simple roots only, 
so that we may define six patches t(‘)(tt ) which lead to solutions of the hKdVc3) hierarchy. 

The corresponding functions tl = bj’)(tl) satisfy the constraint 

t; + f$t3 - At; - tl ts = 0, 

which can be explicitly solved for the variable x := t3 as 

t: J t6 
x=--k 

6 
$ + t1t5. 

Thus, one finds two real continuous branches tl = by’(x, ts)(a = 1,2). Observe that the 
branch over the point (x, tl) = ((5t5)3/5/3, (5t5)‘i5), has singularx-derivative at that point. 
Notice also that bC2)(c, t5) = -b(‘)(-x, -ts). 

Let us consider now the case A(tl) = 0; that is to say, 

t3 = g5tp, 

for a certain determination of the quintic root. Under this condition one finds 

t3 = -&(t, - (5t#5)3 fi(fl - aj(5tp), 

i=O 

where ai stand for the three different roots of u3 + 3a2 + 6a + 5. Thus we get a patch t(t2) 
determined by 

bl = (5~)“~, b2 = 5(5x)315, x := t5. 

Observe that rs (t(t2) - t(k)) = 0, and that the corresponding wave function is 

$w (k, t2) = exp(k(5x) ‘I5 + k3 5 (5~)~‘~ + k5x + . . .) 
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The associated solution of the hKdV(5) hierarchy is 

6 5 4 
uo=j-$ -- 

U’ - (5x)8/5’ ‘* = (5)6/S ’ 

3 2 
Us = (5x)4/5 ’ u4=02/5. 

The r-functions of the KdV hierarchy of polynomial type are relevant in the analysis of 
the motion of poles for the rational solutions of the KdV equation [22] 

a3u = a$ - 6ualu. 

Suppose tw (tl , tl) is one of these functions. From the results of [2,22] one may prove that 
for most values of tl there exists a positive integer m such that tw can be factorized into I,,, 
different simple factors as 

tw@l,tl) = no1 - Pi(h)), (21) 
i=l 

so that the corresponding solution of the KdV hierarchy takes the form 

uw(Q,t1) = fl L 
i=l 01 - Pi@l>P 

It turns out that under substitution of this expression into the KdV equation one finds [22] 

gPi=12C ’ c 
1 

jfi (Pi - Pj)*’ jfi (Pi - Pj13 = O’ 

and this constitutes a constrained flow of the Calogero-Moser hierarchy. Similar equations 
are obtained by using the higher members of the KdV hierarchy. On the other hand, according 
to the results of the present paper, each of the functions pi (tl) determines a solution of the 
hKdV(3) hierarchy associated with the patch 

ml) = (pi@l),tl>. 

Thus, from (3) the corresponding wave function is 

l+q(k, tl) = - 
tw (d’) @I) - 6 (k)) 

altw(t(i)(tl)) . 

For these solutions it readily follows that the equations of the hKdV(s) hierarchy reduce 
to partial differential equations for the I, functions pi (tl). They describe differential con- 
straints for the hypersurfaces tl = pi (tl ) in Coo involving several coordinates tzi+ 1. 

For example, from (10) and (18) we can see that the third equation of (11) takes the form 

a3a5pi = -a3((a3pij2 + ia3al(lnalt)), i = 0, i,2. 
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Using (21) we get 

al lnt(pi(Q),h) = 2C l j+i Pi(tl) - Pj(tl)' 

and hence 

a3 

[ 

aspi + G33pd2 + i33 c 1 1 = 0. j_+i Pi-_j 

In what concerns the higher hKdV hierarchies, they arise when manifolds of multiple 
zeros are present in the factorization of tw, so that they describe differential constraints for 
the collisions of manifolds of simple zeros. 

It is interesting to notice that the solutions of the hKdV hierarchies determined in this 
section involve in general implicit functions bj (tm). This type of solutions appears also in 
the theory of the Harry Dym equation [23-251 which in turn is also described in the context 
of integrable hierarchies associated with generalized Schrodinger problems. 

5. Loop groups and Birkhoff factorization 

In this section we will provide a Birkhoff factorization problem for the hKdV hierarchies 
on the basis of the loop group description of the Grassmannian [ 181. For the particular case 
we are interested in, it is enough to consider the Lie group GL2 of invertible operators in 
C* and the corresponding loop group LGL2 of smooth maps g : S’ c C -+ GL2 with 
zero-index; i.e., 

Indg = &Tr dk$ . g-’ = 0. 

Sl 

This loop group is an infinite-dimensional Lie group -a Hilbert manifold - with Lie algebra, 
Lg12, given by the set of loops of linear operators in C*. If one considers St embedded in 
the Riemann sphere @ one can define the following relevant Lie subgroups of LGL2: 
- LfGL2 is the set of boundary values in S’ of holomorphic maps from the disk Dt (0) := 

{k E C : Ikl ( 1) to GL2. 
- L-GL2 is the set of boundary values in S’ of holomorphic maps a=\& (0) to GL2. 
- LLGL2 is the set of loops in L-GL2 normalized by unity at co. 
Given k E S’ and m = (ml, m2) E Z* let us denote 

km := diag(kml , km2). 

The Birkhoff factorization theorem states that for any loop g E LGLz there exists a unique 
m, up to permutation, such that 

g = g- . km . g+ 
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where gh E L*GLz. The loops for which m = 0 form a dense open subset of the identity 
component of LGL2 called the big cell of the loop group. 

Let HC2) := L2 (5” , C2) be the Hilbert space of square- integrable functions from S’ into 
C2. There is a canonical isomorphism, also called lexicographic isomorphism, between 
H = L2(S’) and Hc2) 

H t) Hc2) 

w-w:= -W ( > W_ 

given by 

w(k) = w+(k2) + kw_(k2), 

w+(k2) = 
w(k) + w(-k) 

w_(P) = 
w(k) - w(-k) 

2 ’ 2k ’ 

This isomorphism extends to the corresponding Grassmannians, so that in what follows 
the symbol Gr will stand for either Gr(H) or Gr(HC2)) and, to avoid confusion, given a 
subspace W in H we will denote by W (2) the corresponding subspace in H (2). Thus, there 
is a natural action of LGL2 on Gr and, in particular, the orbit of Hy) under the action of 
LGL2 coincides with the set of subspaces Wc2) satisfying kWc2’ c Wc2). Observe that 
Wc2) has zero virtual dimension because the loops have zero-index. As a consequence 

Grc2) S LGL2 . Hc2) + . 

One can show [ 181 that 

GrC2) E LGL2/L+GL2. 

Moreover, as it is stated in the following lemma, each stratum C, can be identified with a 
loop subgroup of L-GL;? and, in particular, I,, E LTGL2. To formulate the next results 
some previous notation is required. For a given m we define its parity p(m), its associated 
Pauli matrix ~~(~1 and the vector m as follows: 

1 - (-l)m 
p(m):= 2 E z2, 

1 0 ( > 0 1 
a0 := o 1 ) crl := 1 o ( 

( > 

m:=(-1)” F 
[ 1 C-1, I>, 

where [a] is the entire part of a. The following Lie subgroups are also required: 
N-GL;? is the set of loops in L-GL2 such that at k = 00 differ from the identity in a 
strictly upper triangular matrix. 
N+GL2 is the set of loops in L+GL2 such that at k = 0 are lower triangular. 
L,GL2 := kmL,GL2k-m I-I N-GL2. 
L;GL2 := k”L,GLzk-” n N+GL2. 



M. Matias et al./.Iournal of Geometry and Physics 29 (1999) 13-34 29 

Notice that form = 0 one gets 

L,=,GL;! = L;GL2, L,+&L2 = 11). 

The following result is already proven in [ 181. Nevertheless, we are including a proof as 
it contains some essential ingredients for our remaining discussion. 

Lemma 1. 

&, Z L,GL2. 

Proofi Recall that the stratum c, has a distinguished subspace 

such that for each W 
Therefore there exists 
satisfying 

in C,,, the orthogonal projection W + Hm is an isomorphism. 
a unique basis, the canonical basis [18], {k2nwo, k2nwl)ng of W 

w&) = k+ + vo(k), wI (k) = km+’ + v1 (k), 

with vo, vr E Hk, vo = O(k-“-l) and vt = O(k+‘). 

The subspace Hh2’ c Hc2) corresponding to H,,, under the lexicographic isomorphism 
is 

Hc2) = km . H-1_2’, 

while th: subspace Wc2) corresponding to W is 

W(2) = &, . Hc2’ 
+ . 

Here & E LGL2 is a loop constructed in terms of generators wu and wt as follows: 

gw = (wo, WI) . cJpp(m). 

Observe that 

gw =gw.km and gw E L,GL2, 

so that we have 

WC21 = gw . fjc2) m . 

Hence each subspace in E,,, determines an element of L;GL2. Reciprocally, any loop in 
L,GL2 give rise to a subspace in .?&. Therefore, 

E, = L-GL2. Hc2) m m . 0 

We are now ready to relate the hKdV hierarchies with Birkhoff factorizations. To this 
end we notice that under the lexicographic isomorphism the multiplication operator by +o 
transforms into the multiplication operator by the matrix function 
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Ilro(k, 0 := exp ( nzbn+lk” J(k)) > C 

where 

J(k) := ‘: ; 
( > 

Theorem 4. Given go E LGL2, let W be the subspace in H corresponding to go . HP) 
and let tw be its associated r-function. Then, for every patch (14) t,,, H t of the Zero set 
of tw, the Birkho#factoriz.ation 

I&’ . go = @I’ . k” . @+, 

where 

(22) 

‘ICtdk, t&d) := exp b(k,t,) + c t2n+lkn 
n>m 

@-(tm) E L,GL2, @+(tm) E L+GL2 

describes theflows of the hKdVz,+t hierarchy on the Grassmannian. 

Proo$ By defining 

+%z) := gw(r(t,,,)) E L,GL2, 

and by using Lemma 1 we can write 

W(t(t,)) = @I’@,). Hk2’. 

Furthermore, W = go . Hy) for some loop go so that 

w(t&)) = $$(G)) . go * Hj?‘, 

and we arrive to the general Birkhoff factorization problem (22). 0 

Now, we analyze the infinitesimal aspects of the Birkhoff factorization problem (22) that 
will lead us to Sato’s type equations and the zero- curvature representation of the hKdVzm+t 
hierarchy. 

We first consider the splitting 

LgT2 = Adkm(L+g12) @ Adkm(L;gK2) 

whose resolution of the identity is 

id= P,“+Py. 
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Observe that this resolution is obtained from the standard one by conjugation, Pl+m = 
Adkm o P+ o Adk-“‘. We further split the Lie subalgebra Adkm (L; g12) as 

Adk’V+2) = L&d2 CB L,gIz, 

and the corresponding resolution is 

Here Ad@ denotes the adjoint action of @ in the Lie algebra Ad@(X) = + . X . I,-~. 
The set LLg12 can be identified with the Schubert cell C,,, in Grc2) which complements the 
stratum Z,,, in the Grassmannian [ 181. Thus, in the previous splitting one can associate n’J 
with the Schubert cell C, and nm with the stratum &, . 

Theorem 5. The injinitesimal version of the Birkhofffactorization (22) decouple into the 
following Sate’s equations for @_: 

~rT((&,+lb + kn)Ad@_(J)) = 0, Schubert ceEZ, 

xY((6’zn+lb + kn)Ad@_(J)) = 82n+t@_ . @I’, stratum, 

and an equation linking the Lax operators 

J52n+l := -42n+l@+. ql, n>m 

with @-: 

L2n+1 = P+(G%n+lb + kn)Adk-“%-(J)). 

where n 2 m. 

Proot By taking right derivatives on (22) we arrive to 

&+I@_ * @I’ - (kn + &+tb)Ad@-(J) 

= Adk”(a2,+t@+ . @;I). (23) 

One can readily notice that a Gel’fand-Dikii argument [26] may be applied in this equa- 
tion. This is so since &+t@_ . @I’ belongs to the Lie algebra Adk”(L,g12), while the 
RHS of (23) belongs to the Lie algebra Adkm(Lfg12): 

Py((a2n+lb + k”)Ad@-(J)) = -Adkm(a2,+t@+ . @Zy’), (24) 

P?((&+lb + kn)Ad@_(J)) = a2n+l@_ . cl+, (25) 

the first equation gives the zero-curvature representation while the second is the Sato equa- 
tion for @_. 

We notice that Eq. (25) splits into two parts 

n,m((a2,+lb + k”)Ad@-(J)) = 0, 

nT((&,+lb + kn)Ad@_(J)) = a2n+14% . @I’. 0 
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For the Lax operators Lz,,+l , n 2 m, one gets zero-curvature equations 

a2r+lL2s+l - 82s+lL2r+l + [LZr+l, L2.7+11 = 0, r,s>m. 

Moreover, because of Eq. (24) one deduces that L2,.+1 belongs to L+gl2 and also that it is 
a polynomial in k. 

We analyse now the Lax operator Lzm+t. To this end we first seek for the generators 
(tug&), wt (&)) of a canonical basis of IV(&)). It is easy to see that the function we 
can be identified with the function $w given in (15). We also know that there exists a 
unique function 6~ (t(&)) that under the orthogonal projection W + H, transforms as 
4~ H km+‘. This function is just the generator 2~1. One can show that 4~ := @o(o(t(tm))& 
can be written as 

wherex := &+I and 

p := &jp,@,) 
j=O 

is a polynomial in h with coefficients pj which are differential polynomials in the coefficients 
a’s and b’s 

Consider next the matrix wave-function 

!P := eo. @I’ . km = go. 0;’ = (+w, $J~). up(,) 

the columns of which being the vectors +W and 4~ = (3, - p)$w in the proper order, 
where we are using the notation x := tzm+l. In computing a,* we need 

aX4w = -paX$w + (U - aXP)qw 

which derives from the energy-dependent Schrodinger equation (2). Then, one can check 
that 

w-l . a,p = ~~~~~ = aPcm, . ( P U-a,p- p2 1 
-P > 

. DPh). 

Moreover, a natural gauge transformation is provided by 

ly := * . n = ww, axllrw) . Op(m), 

with 

1 P fl := up o 1 ( > . Up(m). 

The gauge transformed Lax operator is 

n 0 u 
L2mt1 = ~/3(m) 1 o . up. ( > 
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For the tzn+l-evolution we proceed in a similar way by using now Eqs. (3) and (7). Thus, 
we finally obtain the following expressions for the Lax operators ,CQ~+~, n > m 

while for the gauge transformed operators we get 

,. 
L2n+l = op@Z, . 

( 

-$aXBn -@,2Bn + Bnu 

Bn &b 
* D/m)* 

Notice that the operators 

do satisfy the zero-curvature equations if and only if the corresponding hKdV hierarchy 
holds. This representation was first introduced for the KdV hierarchy by Novikov [27]. 
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